899 research outputs found

    Laser Shock Microforming of Thin Metal Sheets

    Get PDF
    Continuous and long-pulse lasers have been used for the forming of metal sheets in macroscopic mechanical applications. However, for the manufacturing of micro-electromechanical systems (MEMS), the applicability of such type of lasers is limited by the long-relaxation-time of the thermal fields responsible for the forming phenomena. As a consequence of such slow relaxation, the final sheet deformation state is attained only after a certain time, what makes the generated internal residual stress fields more dependent on ambient conditions and might make difficult the subsequent assembly process from the point of view of residual stresses due to adjustment. The use of ns laser pulses provides a suitable parameter matching for the laser forming of an important range of sheet components used in MEMS that, preserving the short interaction time scale required for the predominantly mechanic (shock) induction of deformation residual stresses, allows for the successful processing of components in a medium range of miniaturization, particularly important according to its frequent use in such systems. In the present paper, a discussion is presented on the physics of laser shock microforming and the influence of the different effects on the net bending angle. The experimental setup used for the experiments, sample fabrication and experimental results of influence of number of laser pulses on the net bending angle are also presented

    Laser Shock Microformingof Thin Metal Sheets with ns Lasers

    Get PDF
    Continuous and long-pulse lasers have been used for the forming of metal sheets in macroscopic mechanical applications. However, for the manufacturing of micro-electromechanical systems (MEMS), the use of ns laser pulses provides a suitable parameter matching over an important range of sheet components that, preserving the short interaction time scale required for the predominantly mechanical (shock) induction of deformation residual stresses, allows for the successful processing of components in a medium range of miniaturization without appreciable thermal deformation.. In the present paper, the physics of laser shock microforming and the influence of the different experimental parameters on the net bending angle are presented

    Phenomenology of Mixed Modulus-Anomaly Mediation in Fluxed String Compactifications and Brane Models

    Full text link
    In some string compactifications, for instance the recently proposed KKLT set-up, light moduli are stabilized by nonperturbative effects at supersymmetric AdS vacuum which is lifted to a dS vacuum by supersymmetry breaking uplifting potential. In such models, soft supersymmetry breaking terms are determined by a specific mixed modulus-anomaly mediation in which the two mediations typically give comparable contributions to soft parameters. Similar pattern of soft terms can arise also in brane models to stabilize the radion by nonperturbative effects. We examine some phenomenological consequences of this mixed modulus-anomaly mediation, including the pattern of low energy sparticle spectrum and the possibility of electroweak symmetry breaking. It is noted that adding the anomaly-mediated contributions at MGUTM_{GUT} amounts to replacing the messenger scale of the modulus mediation by a mirage messenger scale (m3/2/MPl)α/2MGUT(m_{3/2}/M_{Pl})^{\alpha/2}M_{GUT} where α=m3/2/[M0ln(MPl/m3/2)]\alpha=m_{3/2}/[M_0\ln(M_{Pl}/m_{3/2})] for M0M_0 denoting the modulus-mediated contribution to the gaugino mass at MGUTM_{GUT}. The minimal KKLT set-up predicts α=1\alpha=1. As a consequence, for α=O(1)\alpha={\cal O}(1), the model can lead to a highly distinctive pattern of sparticle masses at TeV scale, particularly when α=2\alpha= 2.Comment: 20 pages, 15 figures, some notations are changed, typos are corrected and discussions on the CP phase from μ\mu and B are adde

    Supersymmetry Breaking and Moduli Stabilization with Anomalous U(1) Gauge Symmetry

    Get PDF
    We examine the effects of anomalous U(1)_A gauge symmetry on soft supersymmetry breaking terms while incorporating the stabilization of the modulus-axion multiplet responsible for the Green-Schwarz (GS) anomaly cancellation mechanism. In case of the KKLT stabilization of the GS modulus, soft terms are determined by the GS modulus mediation, the anomaly mediation and the U(1)_A mediation which are generically comparable to each other, thereby yielding the mirage mediation pattern of superparticle masses at low energy scale. Independently of the mechanism of moduli stabilization and supersymmetry breaking, the U(1)_A D-term potential can not be an uplifting potential for de Sitter vacuum when the gravitino mass is smaller than the Planck scale by many orders of magnitude. We also discuss some features of the supersymmetry breaking by red-shifted anti-brane which is a key element of the KKLT moduli stabilization.Comment: 32 pages; references are adde

    Modular Cosmology, Thermal Inflation, Baryogenesis and Predictions for Particle Accelerators

    Full text link
    Modular cosmology is plagued by overproduction of unwanted relics, gravitinos and especially moduli, at relatively low energy scales. Thermal inflation provides a compelling solution to this moduli problem, but invalidates most baryogenesis scenarios. We propose a simple model in which the MSSM plus neutrino mass term (LHu)2(LH_u)^2 is supplemented by a minimal flaton sector to drive the thermal inflation, and make two crucial assumptions: the flaton vacuum expectation value generates the μ\mu-term of the MSSM and mL2+mHu2<0m_L^2 + m_{H_u}^2 < 0. The second assumption is particularly interesting in that it violates a well known constraint, implying that there exists a nearby deep non-MSSM vacuum, and provides a clear signature of our model which can be tested at future particle accelerators. We show that our model leads to thermal inflation followed by Affleck-Dine leptogenensis along the LHuLH_u flat direction. A key feature of our leptogenesis scenario is that the HuHdH_uH_d flat direction is also induced to temporarily acquire a large value, playing a crucial role in the leptogenesis, as well as dynamically shielding the field configuration from the deep non-MSSM minimum, ensuring that the fields relax into our MSSM vacuum.Comment: v3; 19 pages, 3 figures; added a reference for section

    Quantum central limit theorem for continuous-time quantum walks on odd graphs in quantum probability theory

    Full text link
    The method of the quantum probability theory only requires simple structural data of graph and allows us to avoid a heavy combinational argument often necessary to obtain full description of spectrum of the adjacency matrix. In the present paper, by using the idea of calculation of the probability amplitudes for continuous-time quantum walk in terms of the quantum probability theory, we investigate quantum central limit theorem for continuous-time quantum walks on odd graphs.Comment: 19 page, 1 figure

    CFD analysis of liquid stream going through the wire-screen mesh

    Get PDF
    Paper presented at the 5th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics, South Africa, 1-4 July, 2007.Wire-screen mesh is normally used for the removal of particles from a liquid stream. Here we consider a system where fluid passes wire-screen mesh perpendicularly. The configurations of wire-screen mesh such as diameter and shape factor of wire affect the stream of fluid going through the screen. In this study, we performed a theoretical approach to the relation between wire mesh and fluid stream with computational fluid dynamics (CFD). FLUENT is used for the simulation. Head loss can be estimated by Rose equation when the stream passes through the wire-mesh (Rose 1945). The drag coefficient (CD) varies with the stream types. The other parameters depend on a specific mesh, velocity and pressure. In the experiment we used a screen of 50 mesh-size and water as a fluid. The pressure drop during water flow was determined. The average and maximum velocities of water were calculated. On the basis of these values, we derived a proportional factor between the velocity of fluid and head loss that can estimate CD.cs201

    Tracing the evolution of nearby early-type galaxies in low density environments. The Ultraviolet view from GALEX

    Full text link
    We detected recent star formation in nearby early-type galaxies located in low density environments, with GALEX Ultraviolet (UV) imaging. Signatures of star formation may be present in the nucleus and in outer rings/arm like structures. Our study suggests that such star formation may be induced by different triggering mechanisms, such as the inner secular evolution driven by bars, and minor accretion phenomena. We investigate the nature of the (FUV-NUV) color vs. Mg2 correlation, and suggest that it relates to "downsizing" in galaxy formation.Comment: Conference "UV Universe 2010" S. Petersburg 31 May - 3 June, 2010 Accepted for publication in Astrophysics & Space Science . The final publication is available at http://www.springerlink.co

    The afterglow and kilonova of the short GRB 160821B

    Full text link
    GRB 160821B is a short duration gamma-ray burst (GRB) detected and localized by the Neil Gehrels Swift Observatory in the outskirts of a spiral galaxy at z=0.1613, at a projected physical offset of 16 kpc from the galaxy's center. We present X-ray, optical/nIR and radio observations of its counterpart and model them with two distinct components of emission: a standard afterglow, arising from the interaction of the relativistic jet with the surrounding medium, and a kilonova, powered by the radioactive decay of the sub-relativistic ejecta. Broadband modeling of the afterglow data reveals a weak reverse shock propagating backward into the jet, and a likely jet-break at 3.5 d. This is consistent with a structured jet seen slightly off-axis while expanding into a low-density medium. Analysis of the kilonova properties suggests a rapid evolution toward red colors, similar to AT2017gfo, and a low nIR luminosity, possibly due to the presence of a long-lived neutron star. The global properties of the environment, the inferred low mass (M_ej < 0.006 Msun) and velocities (v > 0.05 c) of lanthanide-rich ejecta are consistent with a binary neutron star merger progenitor.Comment: 14 pages, 6 figures, MNRAS, in press. Moderate revision, added Figure 5 and X-ray data to Table
    corecore